Euclides, vinculado al Museo de Alejandría y a su Biblioteca, zanja la cuestión al proponer un sistema de estudio en el que se da por sentado la veracidad de ciertas proposiciones por ser intuitivamente claras, y deducir de ellas todos los demás resultados. Su sistema se sintetiza en su obra cumbre,
"Los Elementos", modelo de sistema axiomático-deductivo. Sobre tan sólo cinco postulados y las definiciones que precisa construye toda la Geometría y la Aritmética conocidas hasta el momento. Su obra, en trece volúmenes, perdurará como única verdad geométrica hasta entrado el siglo XIX.
Entre los postulados en los que Euclides se apoya hay uno (el quinto postulado) que trae problemas desde el principio. Su veracidad está fuera de toda duda, pero tal y como aparece expresado en la obra, muchos consideran que seguramente puede deducirse del resto de postulados. Durante los siguientes siglos, uno de los principales problemas de la Geometría será determinar si el V postulado es o no independiente de los otros cuatro, es decir, si es necesario considerarlo como un postulado o es un teorema, es decir, puede deducirse de los otros, y por lo tanto colocarse entre el resto de resultados de la obra.
Entre los postulados en los que Euclides se apoya hay uno (el quinto postulado) que trae problemas desde el principio. Su veracidad está fuera de toda duda, pero tal y como aparece expresado en la obra, muchos consideran que seguramente puede deducirse del resto de postulados. Durante los siguientes siglos, uno de los principales problemas de la Geometría será determinar si el V postulado es o no independiente de los otros cuatro, es decir, si es necesario considerarlo como un postulado o es un teorema, es decir, puede deducirse de los otros, y por lo tanto colocarse entre el resto de resultados de la obra.
No hay comentarios:
Publicar un comentario